>
>
>
>
데이터 예측을 위한 머신 러닝 : 기본 알고리즘 및 적용 예제, 사례 연구로 살펴보는
에이콘 데이터 과학 시리즈1 ㅣ 존 캘러허(John D. Kelleher), 황정동 ㅣ 에이콘출판 ㅣ Fundamentals of Machine Learning for Predictive Data Analytics
  • 정가
45,000원
  • 판매가
40,500원 (10% ↓, 4,500원 ↓)
  • 발행일
2017년 04월 28일
  • 페이지수/크기/무게
632page/189*252*40/1546g
  • ISBN
9788960779976/8960779970
  • 주문수량
  • 절판
  • 제휴몰 주문 시 고객보상, 일부 이벤트 참여 및 증정품 증정, 하루/당일 배송에서 제외되므로 참고 바랍니다.
  • 시리즈 도서
에이콘 데이터 과학 시리즈(총77건)
고객 리텐션의 전략 : 데이터를 통해 고객 이탈을 막아라     36,000원 (10%↓)
데이터의 미학 : 빅데이터 기술에서 데이터 과학자까지 데이터에 관한 모든 것     31,500원 (10%↓)
The R Book(한국어판) : R로 배우는 데이터 분석 기술     49,500원 (10%↓)
빅데이터에서 천금의 기회를 캐라 : 테라데이타 최고분석책임자가 들려주는 기업 빅데이터 활용 전략     22,500원 (10%↓)
차세대 데이터 플랫폼을 지향하는 아파치 하둡 YARN     32,400원 (10%↓)
  • 상세정보
  • [데이터 예측을 위한 머신 러닝]은 데이터를 바탕으로 결과를 예측하는 데이터 예측이라는 대표적인 머신 러닝 적용 분야를 통해 다양한 머신 러닝의 기본 원리를 알아보고, 각 방식의 장단점과 상황에 맞는 선택 기준을 알아본다. 실제 머신 러닝을 사용할 때 알고리즘 선택 만큼이나 중요한 데이터 준비, 데이터 탐색 과정을 비롯해 수립한 모델의 평가 및 적용, 모니터링에 이르는 데이터 예측 프로젝트의 전 과정을 상세히 다룬다. 이와 관련된 여러 개념을 다양한 분야의 적용 예제, 사례 연구를 통해 구체적으로 이해하기 쉽게 설명한다.
  • ★ 이 책의 대상 독자 ★ 이 책은 전산 과학, 자연 과학, 사회 과학, 공학, 경영학 학부생과 대학원생을 위한 머신 러닝, 데이터 마이닝, 데이터 분석이나 인공지능 강의에 사용할 수 있다. 또한 이 책은 데이터 분석가 관점에서 머신 러닝을 산업에 적용하는 사례 연구를 담고 있으므로, 현업 실무자의 입문서나 해당 분야 산업 교육 교재로도 사용할 수 있다. ★ 이 책의 구성 ★ 1장. '데이터 예측 분석을 위한 머신 러닝'에서는 머신 러닝을 소개하고,표준 데이터 분석 프로젝트의 생애에서 머신 러닝의 역할을 설명한다. 2장. '데이터에서 통찰을 거쳐 결정으로'에서는 머신 러닝을 바탕으로 비즈니스 목적에 맞는 예측 분석 해법을 설계하고 구축하기 위한 체계를 제공한다. 모든 머신 러닝 알고리즘은 학습에 필요한 데이터셋을 가정하고 있으며, 3장. '데이터 탐색'에서 예측 모델 수립에 사용할 데이터셋을 설계, 구축하고 품질을 확인하는 방법을 설명한다. 4장부터 머신 러닝을 소개한다. 4장. '정보 기반 학습'에서는 정보 수집을 통한 학습, 5장. '유사도 기반 학습'에서는 유추를 통한 학습, 6장. '확률 기반 학습'에서는 가능성 높은 결과를 예측하는 학습, 7장. '오류 기반 학습'에서는 오차를 최소화하는 해법을 찾는 방식의 학습을 제시한다. 각 장들은 크게 두 부분으로 구성된다. 첫 번째 부분에서는 해당 장에서 제시할 주제에 대해 비공식적인 소개를 하고, 내용을 이해하는 데 필요한 근본적인 기술적 개념에 대해 자세히 소개하고, 제시한 학습 방식이 사용하는 표준 머신 러닝 알고리즘을 자세한 적용 예제를 곁들여 설명한다. 두 번째 부분에서는 표준 알고리즘을 잘 알려진 변형 알고리즘으로 확장하는 다양한 방법을 설명한다. 기술적 내용이 실린 장을 이렇게 두 부분으로 구성한 이유는 이렇게 하면 각 장의 내용이 자연스럽게 분리되기 때문이다. 결과적으로 각 장의 첫 번째 부분(기본 발상,원리, 표준 알고리즘, 적용 예제)만 강의에서 다뤄도 주제가 포함된다. 8장. '평가'에서는 예측 모델 성능 평가 방법을 설명하고,다양한 평가 지표를 소개한다. 그리고 표준 방식 다음에 확장과 변형을 설명한다. 기술적인 내용을 다루는 이런 장들은 데이터셋이 포함된 자세한 완전한 실세계 예제들과 예제를 뒷받침하는 논문을 통해 예측 분석과 연결이 유지되고 있다. 9장. '사례 연구: 고객 이탈'과 10장. '사례 연구: 은하 분류'의 사례 연구를 통해 더 넓은 사업적 맥락과 머신 러닝과의 연결 고리를 볼 수 있다. 특히 사례 연구들은 예측 분석 프로젝트의 성공에 필수적인 모델 수립 너머의 비즈니스 이해, 문제 정의, 데이터 수집 및 준비, 통찰을 얻기 위한 의사소통과 같은 다양한 문제와 작업들 을 강조하고 있다. 마지막으로 11장. '데이터 예측 분석을 위한 머신 러닝의 예술'은 머신 러닝의 다양한 근본 주제들을 살펴보고, 주어진 작업에 적절한 머신 러닝 방식을 모델 정확도 이상의 요소들을 고려해 선택하는 방법들도 살펴본다. 또한 모델의 특성과 비즈니스 필요 사항도 다룬다. ★ 지은이의 말 ★ 이 책을 쓰는 목적은 머신 러닝의 기본 원리에 대한 접근 가능한 입문용 교과서를 제공하고 사업 분야, 과학 분야, 기타 조직의 실제 데이터 예측 분석 문제를 푸는 데 사용하는 머신 러닝 방법을 제공하는 것이다. 따라서 이 책은 머신 러닝 책들이 다루는 표준 주제를 넘어 예측 분석 프로젝트의 생애, 데이터 준비, 속성 설계, 모델 적용 등의 주제를 다룬다. 이 책의 설계는 수년간의 머신 러닝 강의 경험에 따른 것이며 책의 접근 방식과 자료들은 강의...
  • 1장. 데이터 예측 분석을 위한 머신 러닝 __1.1 데이터 예측 분석이란? __1.2 왜 머신 러닝인가? __1.3 머신 러닝의 동작 방식 __1.4 머신 러닝이 잘못되는 경우 __1.5 데이터 예측 분석 프로젝트의 생애: CRISP-DM __1.6 데이터 예측 분석 도구 __1.7 앞으로의 여정 __1.8 연습문제 2장. 데이터에서 통찰을 거쳐 결정으로 __2.1 비즈니스 문제를 분석적 해법으로 전환 ____2.1.1 사례 분석: 자동차 보험 사기 __2.2 적용 가능성 평가 ____2.2.1 사례 연구: 자동차 보험 사기 __2.3 기본 분석 테이블 설계 ____2.3.1 사례 연구: 자동차 보험 사기 __2.4 속성 설계와 구현 ____2.4.1 여러 가지 데이터 유형 ____2.4.2 여러 가지 속성 유형 ____2.4.3 시간 처리 ____2.4.4 법적 문제 ____2.4.5 속성 구현 ____2.4.6 사례 연구: 자동차 보험 사기 __2.5 정리 __2.6 더 읽을거리 __2.7 연습문제 3장. 데이터 탐색 __3.1 데이터 품질 보고서 ____3.1.1 사례 연구: 자동차 보험 사기 __3.2 데이터 알아가기 ____3.2.1 정규 분포 ____3.2.2 사례 연구: 자동차 보험 사기 __3.3 데이터 품질 문제 확인 ____3.3.1 값 누락 ____3.3.2 원소 개수 ...
  • 존 캘러허(John D. Kelleher) [저]
  • 더블린 공과대학 컴퓨터학과 강사이자 연구원이다. 전문 분야는 인공 지능, 데이터 분석, 머신 러닝, 자연어 처리, 공간 인식, 문서 분석 등에 걸쳐 있다. 더블린 시립 대학교, 유럽 미디어 연구소, 독일 인공 지능 연구 센터(DFKI) 등의 여러 대학과 연구소에서 일한 바 있다.
  • 황정동 [저]
  • 서울대학교에서 전산학과 물리학을 전공하고, 졸업 후 네오위즈에서 시스템 프로그래밍, 시스템 및 네트워크 운영 등의 업무를 맡아 대규모 리눅스 시스템과 네트워크를 관리하고 설계했다. 검색 전문 회사 첫눈에서 웹로봇을 개발했으며, NHN 검색센터에서는 언어 처리 관련 라이브러리 개발에 참여했다. Cauly 등의 모바일 광고 플랫폼 개발 경험이 있으며, LINE+에서 대규모 메시징 플랫폼 개발 및 운영에도 참여했다. 현재 삼성리서치 AI 센터 연구원으로 일하고 있다.
  • 전체 0개의 구매후기가 있습니다.

인터파크도서는 고객님의 단순 변심에 의한 교환과 반품에 드는 비용은 고객님이 지불케 됩니다.
단, 상품이나 서비스 자체의 하자로 인한 교환 및 반품은 무료로 반품 됩니다.
교환 및 반품이 가능한 경우
상품을 공급 받은 날로부터 7일이내 가능
공급받으신 상품의 내용이 표시, 광고 내용과 다르거나 다르게 이행된 경우에는 공급받은 날로부터 3개월 이내,
   혹은 그사실을 알게 된 날 또는 알 수 있었던 날로부터 30일 이내
상품에 아무런 하자가 없는 경우 소비자의 고객변심에 의한 교환은 상품의 포장상태 등이 전혀 손상되지 않은 경우에 한하여 가능
교환 및 반품이 불가능한 경우
구매확정 이후(오픈마켓상품에 한함)
고객님의 책임 있는 사유로 상품 등이 멸실 또는 훼손된 경우
   (단, 상품의 내용을 확인하기 위하여 포장 등을 훼손한 경우는 제외)
시간이 지남에 따라 재판매가 곤란할 정도로 물품의 가치가 떨어진 경우
포장 개봉되어 상품 가치가 훼손된 경우
다배송지의 경우 반품 환불
다배송지의 경우 다른 지역의 반품을 동시에 진행할 수 없습니다.
1개 지역의 반품이 완료된 후 다른 지역 반품을 진행할 수 있으므로, 이점 양해해 주시기 바랍니다.
중고상품의 교환
중고상품은 제한된 재고 내에서 판매가 이루어지므로, 교환은 불가능합니다.
오픈마켓 상품의 환불
오픈마켓상품에 대한 책임은 원칙적으로 업체에게 있으므로, 교환/반품 접수시 반드시 판매자와 협의 후 반품 접수를 하셔야하며,
   반품접수 없이 반송하거나, 우편으로 보낼 경우 상품 확인이 어려워 환불이 불가능할 수 있으니 유의하시기 바랍니다.
배송예정일 안내
인터파크 도서는 모든 상품에 대해 배송완료예정일을 웹사이트에 표시하고 있습니다.
<인터파크 직배송 상품>
상품은 월~토요일 오전 10시 이전 주문분에 대하여 당일 출고/당일 배송완료를 보장하는 상품입니다.
상품은 서울지역/평일 주문분은 당일 출고/익일 배송완료를 보장하며,
서울외지역/평일 주문분의 경우는 오후 6시까지 주문분에 대하여 익일 배송완료를 보장하는 상품입니다.
(단, 월요일은 12시까지 주문에 한함)
상품은, 입고예정일(제품출시일)+택배사배송일(1일)에 배송완료를 보장합니다.
~ 상품은 유통특성상 인터파크에서 재고를 보유하지 않은 상품으로
주문일+기준출고일+택배사배송일(1일)에 배송완료를 보장합니다.(토/공휴일은 배송기간에 포함되지 않습니다.)
※기준출고일:인터파크가 상품을 수급하여 물류창고에서 포장/출고하기까지 소요되는 시간
<업체 직접배송/오픈마켓 상품>
~ 상품은 업체가 주문을 확인하고, 출고하기까지 걸리는 시간입니다.
주문일+기준출고일+택배사배송일(2일)에 배송완료를 보장합니다.(토/공휴일은 배송기간에 포함되지 않습니다.)
※5일이내 출고가 시작되지 않을시, 오픈마켓 상품은 자동으로 주문이 취소되며, 고객님께 품절보상금을 지급해 드립니다.
배송비 안내
도서(중고도서 포함)만 구매하시면 : 배송비 2,000원 (1만원이상 구매 시 무료배송)
음반/DVD만 구매하시면 : 배송비 1,500원 (2만원이상 구매 시 무료배송)
잡지/만화/기프트만 구매하시면 : 배송비 2,000원 (2만원이상 구매 시 무료배송)
도서와 음반/DVD를 함께 구매하시면 : 배송비 1,500원 1만원이상 구매 시 무료배송)
도서와 잡지/만화/기프트/중고직배송상품을 함께 구매하시면 : 2,000원 (1만원이상 구매 시 무료배송)
업체직접배송상품을 구매시 : 업체별로 상이한 배송비 적용

   * 세트상품의 경우 부분취소 시 추가 배송비가 부과될 수 있습니다.
   * 북카트에서 배송비없애기 버튼을 클릭하셔서, 동일업체상품을 조금 더 구매하시면, 배송비를 절약하실 수 있습니다.
해외배송 안내
인터파크도서에서는 국내에서 주문하시거나 해외에서 주문하여 해외로 배송을 원하실 경우 DHL과 특약으로 책정된 요금표에
   의해 개인이 이용하는 경우보다 배송요금을 크게 낮추며 DHL(www.dhl.co.kr)로 해외배송 서비스를 제공합니다.
해외배송은 도서/CD/DVD 상품에 한해 서비스하고 있으며, 다른 상품을 북카트에 함께 담으실 경우 해외배송이 불가합니다.
해외주문배송 서비스는 인터파크 도서 회원 가입을 하셔야만 신청 가능합니다.
알아두세요!!!
도매상 및 제작사 사정에 따라 품절/절판 등의 사유로 취소될 수 있습니다.
오픈마켓업체의 배송지연시 주문이 자동으로 취소될 수 있습니다.
출고가능 시간이 서로 다른 상품을 함께 주문할 경우 출고가능 시간이 가장 긴 기준으로 배송됩니다.
유통의 특성상 출고기간은 예정보다 앞당겨지거나 늦춰질 수 있습니다.
택배사 배송일인 서울 및 수도권은 1~2일, 지방은 2~3일, 도서, 산간, 군부대는 3일 이상의 시간이 소요됩니다.
  • 0개
  • 0개