>
>
오토케라스로 만드는 AutoML : 몇 줄의 코딩으로 이용할 수 있는 딥러닝
데이터 과학 시리즈(에이콘)1 ㅣ Sobrecueva, Luis, 이진형 ㅣ 에이콘출판 ㅣ Automated Machine Learning with AutoKeras
  • 정가
25,000원
  • 판매가
22,500원 (10% ↓, 2,500원 ↓)
  • 발행일
2023년 05월 31일
  • 페이지수/크기/무게
208page/188*236*17/610g
  • ISBN
9791161757452/1161757457
  • 배송비
무료배송
  • 배송예정일
10/05(목) 배송완료예정
  • 현 보유재고
100 권 이상
  • 주문수량
  • 바로구매 북카트담기
  • 제휴몰 주문 시 고객보상, 일부 이벤트 참여 및 증정품 증정, 하루/당일 배송에서 제외되므로 참고 바랍니다.
  • 시리즈 도서
데이터 과학 시리즈(에이콘)(총88건)
파이토치 라이트닝으로 시작하는 딥러닝 : 파이썬으로 빠르게 고성능 AI 모델 만들기     31,500원 (10%↓)
텐서플로와 케라스로 구현하는 딥러닝     45,000원 (10%↓)
헬스케어 빅데이터 분석의 정석 : 한 권으로 끝내는 실사례에 기초한 헬스케어 빅데이터 분석 기술     31,500원 (10%↓)
로보틱스 알고리듬 : 중고등학생을 위한 입문서     27,000원 (10%↓)
인공지능 로보틱스     45,000원 (10%↓)
  • 상세정보
  • 프로젝트에서 최첨단 AI 알고리듬을 개발하고 사용하는 방법을 알려주는 책이다. 자동화된 머신러닝에 대한 높은 수준의 소개로 시작하여 머신러닝 접근 방식을 시작하는 데 필요한 모든 개념을 설명한다. 그 다음 오토케라스를 사용하여 문서에 대한 감정 분석을 수행하는 방법을 다룬다. 또한 오토케라스로 토픽 분류를 위한 커스텀 모델을 구현하는 방법을 보여준다. 마지막으로 다중 모드 데이터 및 다중 작업, 오토모델로 모델을 사용자 정의하거나 오토케라스 확장 기능을 사용한 실험 결과 시각화와 같은 오토케라스의 고급 개념을 살펴본다. 이 책을 마치면 오토케라스로 회사에서 자신만의 머신러닝 모델을 설계할 수 있을 것이다.
  • ◈ 이 책에서 다루는 내용 ◈ ◆ 텐서플로 및 오토케라스로 딥러닝 워크스테이션 설정 ◆ 오토케라스로 기계학습 파이프라인 자동화 ◆ 오토케라스를 사용하여 이미지 및 텍스트 분류 모델 및 회귀 모델 구현 ◆ 오토케라스를 사용하여 텍스트에 대한 감정 분석을 수행하여 부정적 또는 긍정적으로 분류 ◆ 오토케라스를 활용하여 주제별로 문서 분류 ◆ 가장 강력한 확장 기능을 사용하여 오토케라스를 최대 활용 ◈ 이 책의 대상 독자 ◈ 자동화된 ML 기술을 프로젝트에 적용하려는 머신러닝 및 딥러닝 애호가를 위한 책이다. 최대한 활용하려면 파이썬 프로그래밍에 대한 기본적인 사전지식이 필요하다. ◈ 이 책의 구성 ◈ 1장, ‘자동화된 머신러닝 소개’에서는 AutoML 사용 방법의 유형 및 해당 소프트웨어 시스템에 대한 개요와 함께 자동화된 머신러닝의 주요 개념을 다룬다. 2장, ‘오토케라스 시작하기’에서는 오토케라스를 시작하는 데 필요한 모든 것을 다루고, 잘 설명된 기본 코드 예제를 통해 오토케라스를 실행한다. 3장, ‘오토케라스로 머신러닝 파이프라인 자동화하기’에서는 표준 머신러닝 파이프라인을 설명하고, 오토케라스로 파이프라인을 자동화하는 방법을 다룬 후, 모델을 학습시키기 전에 적용할 주요 데이터 준비의 모범 사례를 소개한다. 4장, ‘오토케라스를 사용한 이미지 분류 및 회귀’에서는 더 복잡하고 강력한 이미지 인식 모델을 만들고 오토케라스의 동작 방식을 조사하며 성능을 개선하기 위한 파인튜닝 방법을 살펴봄으로써 이미지 관련 문제에 오토케라스를 사용하는 것에 중점을 둔다. 5장, ‘오토케라스를 사용한 텍스트 분류 및 회귀’에서는 오토케라스를 이용한 텍스트(단어 시퀀스) 작업에 중점을 둔다. 또한 순환 신경망이 무엇이며 어떻게 작동하는지 설명한다. 6장, ‘오토케라스를 사용한 구조화된 데이터 작업’에서는 구조화된 데이터셋을 탐색하고, 변환하고, 특정 모델의 데이터 소스로 사용할 수 있다. 또한 구조화된 데이터를 기반으로 작업을 해결하기 위해 고유한 분류 및 회귀 모델을 생성한다. 7장, ‘오토케라스를 사용한 감정 분석’에서는 텍스트 분류 모델을 사용해 텍스트 데이터에서 감정을 추출하고, 감정 예측 모델을 구현해 텍스트 분류 개념을 실용적인 방식으로 적용한다. 8장, ‘오토케라스를 사용한 주제 분류’에서는 이전 장에서 배운 텍스트 기반 작업의 실용적인 측면에 중점을 둔다. 오토케라스로 주제 분류 모델을 생성한 다음, 주제 또는 범주 기반 데이터셋에 적용하는 방법을 알려준다. 9장, ‘다중 모드 및 다중 작업 데이터’에서는 오토모델 API로 다중 모드 및 다중 작업 데이터를 처리하는 방법을 설명한다. 10장, ‘모델 내보내기 및 시각화’에서는 오토케라스 모델을 내보내고 가져오는 방법과 모델을 학습시키는 동안 일어나는 일을 실시간으로 그래픽을 사용해 시각화하는 방법을 알려준다. ◈ 옮긴이의 말 ◈ 머신러닝을 공부하는 사람들이 처음 책을 폈을 때 머신러닝이란 무엇인가, 또는 지도학습과 비지도학습은 무엇인가에 대해 배웠을 것입니다. 딥러닝 책으로 공부를 시작한 분들은 신경망, 미분, 역전파의 개념을 배웠을 것입니다. 개념도 물론 중요하지만 우리가 이러한 공부를 하는 이유는 실무에서 사용하기 위함입니다. 그런데 이런 이론적인 내용만 공부하다 보면 정작 AI를 비즈니스에 적용할 수 있는지 검토하는 데까진 더 오랜 시간이 걸립니다. 그래서 구글, 아마존, 마이크로소프트와 같은 클라우드 플랫폼 회사에서는 머신러닝을 비즈니스에서 빠르게 테스트하고 적용할 수 있도록 Vertex AI, Amazon SageMaker Autopilot, Azure Mac...
  • 제1부 AutoML 기초 __1장. 자동화된 머신러닝 소개 ____표준 ML 워크플로의 구조 ______데이터 수집 ______데이터 전처리 ______모델 배포 ______모델 모니터링 ____AutoML의 정의 ______표준 접근 방식과의 차이점 ____AutoML의 유형 ______피처 엔지니어링 자동화 ______모델 선택 및 하이퍼파라미터 최적화 자동화 ______신경망 아키텍처 선택 자동화 ____요약 ____더 읽을거리 __2장. 오토케라스 시작하기 ____기술 요구사항 ____딥러닝이란 무엇인가? ____신경망이란 무엇이며 어떻게 학습하는가? ____딥러닝 모델은 어떻게 학습하는가? ____왜 오토케라스인가? ______오토케라스 실험 실행 방법 ____오토케라스 설치 ______클라우드에 오토케라스 설치 ______오토케라스 로컬 설치 ____Hello MNIST: 첫 번째 오토케라스 실험 구현 ______필요한 패키지 가져오기 ______MNIST 데이터셋 가져오기 ______숫자는 어떻게 분포하는가? ______이미지 분류 모델 만들기 ______테스트 세트로 모델 평가 ______모델 시각화 ______이미지 회귀 분류 모델 만들기 ______테스트 세트로 모델 평가 ______모델 시각화 ____요약 __3장. 오토케라스로 머신러닝 파이프라인 자동화하기 ...
  • Sobrecueva, Luis [저]
  • 현재 카비파이(Cabify)에서 근무하는 선임 소프트웨어 엔지니어이자 ML/DL 실무자다. OpenAI 프로젝트에 기여했으며 오토케라스 프로젝트에도 기여했다.
  • 이진형 [저]
  • 데이터에서 숨어있는 인사이트를 찾는 일을 좋아한다. 11번가에서 데이터 엔지니어와 데이터 사이언티스트 역할 사이에서 판매자와 구매자를 위한 개인화 추천 서비스를 제공하고 있으며, 데이터 파이프라인과 데이터 모델을 만들어 서비스에 적용하고 분석하는 일을 하고 있다.
  • 전체 0개의 구매후기가 있습니다.

인터파크도서는 고객님의 단순 변심에 의한 교환과 반품에 드는 비용은 고객님이 지불케 됩니다.
단, 상품이나 서비스 자체의 하자로 인한 교환 및 반품은 무료로 반품 됩니다.
교환 및 반품이 가능한 경우
상품을 공급 받은 날로부터 7일이내 가능
공급받으신 상품의 내용이 표시, 광고 내용과 다르거나 다르게 이행된 경우에는 공급받은 날로부터 3개월 이내,
   혹은 그사실을 알게 된 날 또는 알 수 있었던 날로부터 30일 이내
상품에 아무런 하자가 없는 경우 소비자의 고객변심에 의한 교환은 상품의 포장상태 등이 전혀 손상되지 않은 경우에 한하여 가능
교환 및 반품이 불가능한 경우
구매확정 이후(오픈마켓상품에 한함)
고객님의 책임 있는 사유로 상품 등이 멸실 또는 훼손된 경우
   (단, 상품의 내용을 확인하기 위하여 포장 등을 훼손한 경우는 제외)
시간이 지남에 따라 재판매가 곤란할 정도로 물품의 가치가 떨어진 경우
포장 개봉되어 상품 가치가 훼손된 경우
다배송지의 경우 반품 환불
다배송지의 경우 다른 지역의 반품을 동시에 진행할 수 없습니다.
1개 지역의 반품이 완료된 후 다른 지역 반품을 진행할 수 있으므로, 이점 양해해 주시기 바랍니다.
중고상품의 교환
중고상품은 제한된 재고 내에서 판매가 이루어지므로, 교환은 불가능합니다.
오픈마켓 상품의 환불
오픈마켓상품에 대한 책임은 원칙적으로 업체에게 있으므로, 교환/반품 접수시 반드시 판매자와 협의 후 반품 접수를 하셔야하며,
   반품접수 없이 반송하거나, 우편으로 보낼 경우 상품 확인이 어려워 환불이 불가능할 수 있으니 유의하시기 바랍니다.
배송예정일 안내
인터파크 도서는 모든 상품에 대해 배송완료예정일을 웹사이트에 표시하고 있습니다.
<인터파크 직배송 상품>
상품은 월~토요일 오전 10시 이전 주문분에 대하여 당일 출고/당일 배송완료를 보장하는 상품입니다.
상품은 서울지역/평일 주문분은 당일 출고/익일 배송완료를 보장하며,
서울외지역/평일 주문분의 경우는 오후 6시까지 주문분에 대하여 익일 배송완료를 보장하는 상품입니다.
(단, 월요일은 12시까지 주문에 한함)
상품은, 입고예정일(제품출시일)+택배사배송일(1일)에 배송완료를 보장합니다.
~ 상품은 유통특성상 인터파크에서 재고를 보유하지 않은 상품으로
주문일+기준출고일+택배사배송일(1일)에 배송완료를 보장합니다.(토/공휴일은 배송기간에 포함되지 않습니다.)
※기준출고일:인터파크가 상품을 수급하여 물류창고에서 포장/출고하기까지 소요되는 시간
<업체 직접배송/오픈마켓 상품>
~ 상품은 업체가 주문을 확인하고, 출고하기까지 걸리는 시간입니다.
주문일+기준출고일+택배사배송일(2일)에 배송완료를 보장합니다.(토/공휴일은 배송기간에 포함되지 않습니다.)
※5일이내 출고가 시작되지 않을시, 오픈마켓 상품은 자동으로 주문이 취소되며, 고객님께 품절보상금을 지급해 드립니다.
배송비 안내
도서(중고도서 포함)만 구매하시면 : 배송비 2,000원 (1만원이상 구매 시 무료배송)
음반/DVD만 구매하시면 : 배송비 1,500원 (2만원이상 구매 시 무료배송)
잡지/만화/기프트만 구매하시면 : 배송비 2,000원 (2만원이상 구매 시 무료배송)
도서와 음반/DVD를 함께 구매하시면 : 배송비 1,500원 1만원이상 구매 시 무료배송)
도서와 잡지/만화/기프트/중고직배송상품을 함께 구매하시면 : 2,000원 (1만원이상 구매 시 무료배송)
업체직접배송상품을 구매시 : 업체별로 상이한 배송비 적용

   * 세트상품의 경우 부분취소 시 추가 배송비가 부과될 수 있습니다.
   * 북카트에서 배송비없애기 버튼을 클릭하셔서, 동일업체상품을 조금 더 구매하시면, 배송비를 절약하실 수 있습니다.
해외배송 안내
인터파크도서에서는 국내에서 주문하시거나 해외에서 주문하여 해외로 배송을 원하실 경우 DHL과 특약으로 책정된 요금표에
   의해 개인이 이용하는 경우보다 배송요금을 크게 낮추며 DHL(www.dhl.co.kr)로 해외배송 서비스를 제공합니다.
해외배송은 도서/CD/DVD 상품에 한해 서비스하고 있으며, 다른 상품을 북카트에 함께 담으실 경우 해외배송이 불가합니다.
해외주문배송 서비스는 인터파크 도서 회원 가입을 하셔야만 신청 가능합니다.
알아두세요!!!
도매상 및 제작사 사정에 따라 품절/절판 등의 사유로 취소될 수 있습니다.
오픈마켓업체의 배송지연시 주문이 자동으로 취소될 수 있습니다.
출고가능 시간이 서로 다른 상품을 함께 주문할 경우 출고가능 시간이 가장 긴 기준으로 배송됩니다.
유통의 특성상 출고기간은 예정보다 앞당겨지거나 늦춰질 수 있습니다.
택배사 배송일인 서울 및 수도권은 1~2일, 지방은 2~3일, 도서, 산간, 군부대는 3일 이상의 시간이 소요됩니다.
  • 0개
  • 0개