>
>
>
>
연합학습 
치앙 양, 이태휘 ㅣ 에이콘출판 ㅣ Federated Learning
  • 정가
35,000원
  • 판매가
31,500원 (10% ↓, 3,500원 ↓)
  • 발행일
2022년 08월 22일
  • 페이지수/크기/무게
296page/188*236*24/809g
  • ISBN
9791161756714/116175671X
  • 배송비
무료배송
  • 배송예정일
09/29(목) 배송완료예정
  • 현 보유재고
100 권 이상
  • 주문수량
  • 바로구매 북카트담기
  • 제휴몰 주문 시 고객보상, 일부 이벤트 참여 및 증정품 증정, 하루/당일 배송에서 제외되므로 참고 바랍니다.
  • 상세정보
  • 연합학습(연합 머신러닝)이란 훈련 데이터를 한데 모으지 않고 협력적으로 수행하는 머신러닝 기술이다. 기존 머신러닝 기술이 갖고 있던 한계를 넘어 컴퓨팅 자원 소모의 분산, 프라이버시 보호, 개인 맞춤형 학습 등을 실현할 수 있는 대안으로 주목받아 구글, 애플, IBM 등 많은 테크 기업에서 연구가 이뤄지고 있다. 이 책은 기존의 머신러닝 기술에 익숙한 개발자, 연구자들에게 연합학습 분야의 연구 동향을 두루 정리해서 알려준다. 우리말로는 처음으로 연합학습을 소개하는 책이다.
  • ◈ 이 책에서 다루는 내용 ◈ 여러 데이터 소유자가 모두 훈련에 사용할 각자의 로컬 데이터를 비공개로 유지하며 함께 협력해 서로 공유하는 예측 모델을 훈련시키고 이용하려면 어떻게 해야 할까? 전통적인 머신러닝 방식에서는 모든 데이터를 한곳에, 보통 데이터 센터에 모아야 한다. 그러면 자연히 사용자의 개인 정보 보호와 데이터 기밀 유지에 관한 법률을 위반할 소지가 다분하다. 오늘날 세계 곳곳에서는 테크 기업들에게 사용자 데이터를 개인 정보 보호법에 따라 신중하게 취급할 것을 요구한다. 유럽 연합의 일반 데이터 보호 규정(GDPR, General Data Protection Regulation)이 대표적인 예다. 이 책에서는 연합 머신러닝을 이용해 이러한 문제를 어떻게 해결하는지 설명한다. 분산 머신러닝, 암호화 및 보안, 경제 원리와 게임 이론에 근거한 인센티브 메커니즘 설계를 결합한 새로운 해결책을 제시한다. 여러 유형의 프라이버시 보전 머신러닝 솔루션과 각각의 기술 배경을 설명하고, 대표적인 실제 적용 사례를 살펴본다. 연합학습이 어떻게 책임 있는 AI 개발 및 응용에 대한 기술적, 사회적 요구에 부응하는 차세대 머신러닝의 밑거름이 될 수 있는지 알아본다. ◈ 이 책의 대상 독자 ◈ 연합학습 입문서로, 컴퓨터 과학과 AI, ML 분야의 학생들, 그리고 빅데이터 및 AI 애플리케이션 개발자들을 대상으로 한다. 학부 고학년부터 대학원 학생들과 교수, 대학 및 연구 기관에 있는 연구자들까지 유용하게 읽을 수 있을 것이다. 법률이나 정책 담당 기관, 정부 부처에서 일하는 이들에게도 빅데이터 및 AI와 관련된 법적 문제에 대한 참고서가 될 수 있다. 강의용으로는 대학원 세미나 과정의 교재나 연합학습 문헌에 대한 참고서로 사용할 만하다. ◈ 옮긴이의 말 ◈ 지금 옆에 놓여 있는 스마트폰에서 연합학습이 수행 중일 수도 있겠다. 연합학습이란 훈련 데이터를 한데 모으지 않고 협력적으로 수행하는 머신러닝 기술로, 구글에서 2016년에 「Federated Learning: Strategies for Improving Communication Efficiency」라는 논문을 발표하면서 하나의 용어로 자리 잡혔다. 연합학습은 기존의 머신러닝 기술이 지닌 한계를 넘어 컴퓨팅 자원 소모의 분산, 프라이버시 보호, 개인 맞춤형 학습 등을 실현할 수 있는 대안으로 주목받으며 구글, 애플, IBM 등의 거대 기업을 비롯해 많은 테크 기업에서 연구를 진행 중이다. 이에 발맞춰 국내에서도 네이버, 카카오S, KT 등 여러 기업에서 연구 개발을 진행하고 있으며 학계에서도 연구는 물론이고 학회 강좌 등을 통해 기술 전파에 힘쓰고 있다. 이 책은 직접 연합학습 프레임워크를 개발한 저자들이 기존의 머신러닝 기술에 익숙한 개발자, 연구자에게 연합학습 분야의 연구 동향을 두루 정리해서 알려준다. 연합학습이 발전해온 전반적인 흐름이나 관련 개념을 익히는 데는 알맞으나 실습 위주의 머신러닝 실용서는 아니며 한 분야를 깊이 다루고 있지 않다. 이 책을 시작점으로 삼아 전체적인 지형도를 파악한 다음, 이를 발판으로 좀 더 구체적으로 관심 있는 분야로 나아가면 좋으리라 생각한다. 실제로 연합학습을 구현해보려면 저자들이 참여한 페드(AIFedAI) 그룹의 페이트(FATE)를 비롯해 텐서플로 페더레이티드(Tensorflow Federated), IBM 페더레이티드 러닝(Federated Learning), 인텔의 오픈(FLOpenFL), 엔비디아(NVIDIA)의 클라라(Clara), 오픈마인드(OpenMined)의 파이시프트(PySyft) 등 여러 오픈소스 연합학습 프레임워크가 나와 있으므로 개발 환경이나 성향에 따라 선택해 사용해보길 바란다. 이 책은 우리말로 연합학습을 처음 소개하는 ...
  • 1장. 서론 1.1 동기 1.2 해결책으로서의 연합학습 1.2.1 연합학습의 정의 1.2.2 연합학습의 범주 1.3 연합학습의 발전 현황 1.3.1 연합학습 분야의 연구 이슈 1.3.2 오픈소스 프로젝트 1.3.3 표준화 활동 1.3.4 FedAI 생태계 1.4 이 책의 구성 2장. 배경지식 2.1 프라이버시 보전 머신러닝 2.2 프라이버시 보전 머신러닝과 보안 머신러닝 2.3 프라이버시 위협 모델과 보안 모델 2.3.1 프라이버시 위협 모델 2.3.2 적대자 모델과 보안 모델 2.4 프라이버시 보전 기법 2.4.1 다자간 보안 계산 2.4.2 동형 암호 2.4.3 차분 프라이버시 3장. 분산 머신러닝 3.1 분산 머신러닝 소개 3.1.1 분산 머신러닝의 정의 3.1.2 분산 머신러닝 플랫폼 3.2 확장성 지향 분산 머신러닝 3.2.1 대규모 머신러닝 3.2.2 확장성 지향 분산 머신러닝 기법 3.3 프라이버시 지향 분산 머신러닝 3.3.1 프라이버시 보전 의사 결정 트리 3.3.2 프라이버시 보전 기법 3.3.3 프라이버시 보전 분산 머신러닝 기법 3.4 프라이버시 보전 경사 하강법 3.4.1 순수 연합학습 3.4.2 프라이버시 보전 방식 3.5 요약 4장. 수평 연합학습 4.1 수평 연합학습의 정의 4.2 수평 연합학습 아키텍처 4.2.1 클라이언트-...
  • 치앙 양 [저]
  • 위뱅크(WeBank)의 AI 부서장(AI 최고 책임자)이자 홍콩 과학기술대학교 컴퓨터공학과 석좌교수다. 그 전에 학과장을 맡은 바 있으며, 빅데이터 인스티튜트(Big Data Institute)의 설립이사(2015~2018)이기도 했다. 관심 분야는 AI, 머신러닝, 데이터 마이닝 등이며 특히 전이학습, 자동 계획 수립, 연합학습, 사례 기반 추론에 관심을 갖고 있다. ACM, AAAI, IEEE, IAPR, AAAS 등 여러 국제 협회의 회원이다. 메릴랜드대학교 칼리지 파크 캠퍼스에서 1989년에 컴퓨터공학 박사학위를, 1985년에 천체물리학 석사학위를 받았다. 학사학위는 천체물리학으로 1982년에 베이징대학교에서 받았다. 워털루대학교(1989~1995)와 사이먼프레이저대학교(1995~2001)의 교수를 역임했다. 「ACM TISTACM Transactions on Intelligent Systems and Technology」와 「IEEE TBDIEEE Transactions on Big Data」 저널의 초대 편집장을 지냈다. IJCAIInternational Joint Conference on AI의 대회장(2017~2019)과 AAAI(Association for the Advancement of AI)의 집행 이사회 멤버(2016~2020)로 봉사했다. 수상 경력으로는 ‘2004/2005 ACM KDDCUP 챔피언십’, ‘ACM SIGKDD 특별 공로상(Distinguished Service Award)’(2017), ‘AAAI 혁신적인 AI 애플리케이션 상(Innovative AI Applications Award)’(2016) 등이 있다. 화웨이(Huawei)의 ‘노아의 방주 연구소(Noah’s Ark Lab)’ 초대 연구소장(2012~2014)을 지냈으며, AI 플랫폼 회사인 포패러다임(4Paradigm)의 공동 설립자이기도 하다. 지은 책으로는 『Intelligent Planning』(Springer, 1997), 『Crafting Your Research Future』(Morgan & Claypool, 2012), 『Constraint-based Design Recovery for Software Engineering』(Springer, 1997) 등이 있다.
  • 이태휘 [저]
  • 산업체와 학교, 연구기관을 거치며 여러 시스템 소프트웨어 개발 프로젝트를 수행했다. 2007년부터 2010년까지 티맥스소프트에서 근무하며 티베로 관계형 데이터베이스 개발에 참여했다. 2014년에 서울대학교 컴퓨터공학부에서 박사학위를 받았으며, 현재 한국전자통신연구원에서 선임연구원으로 재직하며 머신러닝 모델을 이용한 근사 질의 처리 엔진을 개발하는 TrainDB 프로젝트를 이끌고 있다. 에이콘출판사에서 펴낸 『퀄리티 코드』(2017), 『양자 컴퓨팅 입문』(2020), 『양자 컴퓨팅: 이론에서 응용까지』(2020)를 우리말로 옮겼다.
  • 전체 0개의 구매후기가 있습니다.

인터파크도서는 고객님의 단순 변심에 의한 교환과 반품에 드는 비용은 고객님이 지불케 됩니다.
단, 상품이나 서비스 자체의 하자로 인한 교환 및 반품은 무료로 반품 됩니다.
교환 및 반품이 가능한 경우
상품을 공급 받은 날로부터 7일이내 가능
공급받으신 상품의 내용이 표시, 광고 내용과 다르거나 다르게 이행된 경우에는 공급받은 날로부터 3개월 이내,
   혹은 그사실을 알게 된 날 또는 알 수 있었던 날로부터 30일 이내
상품에 아무런 하자가 없는 경우 소비자의 고객변심에 의한 교환은 상품의 포장상태 등이 전혀 손상되지 않은 경우에 한하여 가능
교환 및 반품이 불가능한 경우
구매확정 이후(오픈마켓상품에 한함)
고객님의 책임 있는 사유로 상품 등이 멸실 또는 훼손된 경우
   (단, 상품의 내용을 확인하기 위하여 포장 등을 훼손한 경우는 제외)
시간이 지남에 따라 재판매가 곤란할 정도로 물품의 가치가 떨어진 경우
포장 개봉되어 상품 가치가 훼손된 경우
다배송지의 경우 반품 환불
다배송지의 경우 다른 지역의 반품을 동시에 진행할 수 없습니다.
1개 지역의 반품이 완료된 후 다른 지역 반품을 진행할 수 있으므로, 이점 양해해 주시기 바랍니다.
중고상품의 교환
중고상품은 제한된 재고 내에서 판매가 이루어지므로, 교환은 불가능합니다.
오픈마켓 상품의 환불
오픈마켓상품에 대한 책임은 원칙적으로 업체에게 있으므로, 교환/반품 접수시 반드시 판매자와 협의 후 반품 접수를 하셔야하며,
   반품접수 없이 반송하거나, 우편으로 보낼 경우 상품 확인이 어려워 환불이 불가능할 수 있으니 유의하시기 바랍니다.
배송예정일 안내
인터파크 도서는 모든 상품에 대해 배송완료예정일을 웹사이트에 표시하고 있습니다.
<인터파크 직배송 상품>
상품은 월~토요일 오전 10시 이전 주문분에 대하여 당일 출고/당일 배송완료를 보장하는 상품입니다.
상품은 서울지역/평일 주문분은 당일 출고/익일 배송완료를 보장하며,
서울외지역/평일 주문분의 경우는 오후 6시까지 주문분에 대하여 익일 배송완료를 보장하는 상품입니다.
(단, 월요일은 12시까지 주문에 한함)
상품은, 입고예정일(제품출시일)+택배사배송일(1일)에 배송완료를 보장합니다.
~ 상품은 유통특성상 인터파크에서 재고를 보유하지 않은 상품으로
주문일+기준출고일+택배사배송일(1일)에 배송완료를 보장합니다.(토/공휴일은 배송기간에 포함되지 않습니다.)
※기준출고일:인터파크가 상품을 수급하여 물류창고에서 포장/출고하기까지 소요되는 시간
<업체 직접배송/오픈마켓 상품>
~ 상품은 업체가 주문을 확인하고, 출고하기까지 걸리는 시간입니다.
주문일+기준출고일+택배사배송일(2일)에 배송완료를 보장합니다.(토/공휴일은 배송기간에 포함되지 않습니다.)
※5일이내 출고가 시작되지 않을시, 오픈마켓 상품은 자동으로 주문이 취소되며, 고객님께 품절보상금을 지급해 드립니다.
배송비 안내
도서(중고도서 포함)만 구매하시면 : 배송비 2,000원 (1만원이상 구매 시 무료배송)
음반/DVD만 구매하시면 : 배송비 1,500원 (2만원이상 구매 시 무료배송)
잡지/만화/기프트만 구매하시면 : 배송비 2,000원 (2만원이상 구매 시 무료배송)
도서와 음반/DVD를 함께 구매하시면 : 배송비 1,500원 1만원이상 구매 시 무료배송)
도서와 잡지/만화/기프트/중고직배송상품을 함께 구매하시면 : 2,000원 (1만원이상 구매 시 무료배송)
업체직접배송상품을 구매시 : 업체별로 상이한 배송비 적용

   * 세트상품의 경우 부분취소 시 추가 배송비가 부과될 수 있습니다.
   * 북카트에서 배송비없애기 버튼을 클릭하셔서, 동일업체상품을 조금 더 구매하시면, 배송비를 절약하실 수 있습니다.
해외배송 안내
인터파크도서에서는 국내에서 주문하시거나 해외에서 주문하여 해외로 배송을 원하실 경우 DHL과 특약으로 책정된 요금표에
   의해 개인이 이용하는 경우보다 배송요금을 크게 낮추며 DHL(www.dhl.co.kr)로 해외배송 서비스를 제공합니다.
해외배송은 도서/CD/DVD 상품에 한해 서비스하고 있으며, 다른 상품을 북카트에 함께 담으실 경우 해외배송이 불가합니다.
해외주문배송 서비스는 인터파크 도서 회원 가입을 하셔야만 신청 가능합니다.
알아두세요!!!
도매상 및 제작사 사정에 따라 품절/절판 등의 사유로 취소될 수 있습니다.
오픈마켓업체의 배송지연시 주문이 자동으로 취소될 수 있습니다.
출고가능 시간이 서로 다른 상품을 함께 주문할 경우 출고가능 시간이 가장 긴 기준으로 배송됩니다.
유통의 특성상 출고기간은 예정보다 앞당겨지거나 늦춰질 수 있습니다.
택배사 배송일인 서울 및 수도권은 1~2일, 지방은 2~3일, 도서, 산간, 군부대는 3일 이상의 시간이 소요됩니다.
  • 0개
  • 0개