>
>
>
그래프 머신러닝 : 머신러닝 알고리듬을 적용해 그래프 데이터 활용하기
데이터 과학 시리즈(에이콘)1 ㅣ 클라우디오 스타밀레, 장기식 ㅣ 에이콘출판 ㅣ Graph Machine Learning: Take graph data to the next level by applying machine learning techniques and algorithms
  • 정가
35,000원
  • 판매가
31,500원 (10% ↓, 3,500원 ↓)
  • 발행일
2023년 01월 31일
  • 페이지수/크기/무게
360page/187*234*28/940g
  • ISBN
9791161757209/1161757201
  • 배송비
무료배송
  • 배송예정일
04/04(화) 배송완료예정
  • 현 보유재고
100 권 이상
  • 주문수량
  • 바로구매 북카트담기
  • 제휴몰 주문 시 고객보상, 일부 이벤트 참여 및 증정품 증정, 하루/당일 배송에서 제외되므로 참고 바랍니다.
  • 시리즈 도서
데이터 과학 시리즈(에이콘)(총76건)
그래프 머신러닝 : 머신러닝 알고리듬을 적용해 그래프 데이터 활용하기     31,500원 (10%↓)
공익을 위한 데이터 : 사회 발전을 위한 데이터 액션 활용법     36,000원 (10%↓)
네트워크 2/e     54,000원 (10%↓)
파이썬으로 하는 마케팅 연구와 분석 : 데이터 처리부터 시각화까지     36,000원 (10%↓)
Pandas를 이용한 데이터 분석 실습 : 라이브러리로 다양한 실제 데이터 분석     45,000원 (10%↓)
  • 상세정보
  • 파이썬으로 그래프 데이터를 다루기 위한 패키지인 NetworkX는 손쉽게 그래프를 생성, 조작, 분석하기 위한 매우 유용한 도구이다. NetworkX로 그래프 데이터를 이해하기 위한 기본적인 방법과 더불어 node2vec, edge2vec과 같은 다양한 머신러닝 알고리듬을 이용해 그래프 데이터를 활용하는 방법을 실생활에 적용가능한 예시와 함께 소개한다.
  • ◈ 이 책의 대상 독자 ◈ 이 책은 데이터 포인트를 풀고, 위상(topology) 정보를 활용해 분석과 모델의 성능을 개선하려는 데이터 분석가, 그래프 개발자, 그래프 분석가, 그래프 전문가를 대상으로 한다. 머신러닝 기반 그래프 데이터베이스를 구축하려는 데이터 과학자와 머신러닝 개발자에게도 유용하다. 그래프 데이터베이스와 그래프 데이터에 대한 초급 수준의 지식을 가지고 있는 사람이 읽기에 적합한 책이다. 이 책의 내용을 최대한 활용하기 위해서는 파이썬 프로그래밍과 머신러닝에 대한 중급 수준의 실무 지식 또한 필요하다. ◈ 이 책의 구성 ◈ 1장, '그래프 시작하기’에서는 NetworkX 파이썬 라이브러리를 사용해 그래프 이론의 기본 개념을 소개한다. 2장, ‘그래프 머신러닝’에서는 그래프 머신러닝과 그래프 임베딩 기술의 주요 개념을 소개한다. 3장, ‘그래프 비지도 학습’에서는 비지도 그래프 임베딩의 최신 방법을 다룬다. 4장, ‘그래프 지도 학습’에서는 지도 그래프 임베딩의 최신 방법을 다룬다. 5장, ‘그래프에서의 머신러닝 문제’에서는 그래프에서 가장 일반적인 머신러닝 작업을 소개한다. 6장, ‘소셜 네트워크 그래프’에서는 분석 소셜 네트워크 데이터에 머신러닝 알고리듬을 적용하는 방법을 소개한다. 7장, ‘그래프를 사용한 텍스트 분석 및 자연어 처리’에서는 자연어 처리 작업에 머신러닝 알고리듬을 적용하는 방법을 소개한다. 8장, ‘신용카드 거래에 대한 그래프 분석’에서는 신용카드 부정 거래 탐지에 머신러닝 알고리듬을 적용하는 방법을 소개한다. 9장, ‘데이터 드리븐 그래프 기반 응용 프로그램 구축’에서는 큰 그래프를 처리하는 데 유용한 몇 가지 기술을 소개한다. 10장, ‘그래프의 새로운 트랜드’에서는 그래프 머신러닝의 몇 가지 새로운 동향(알고리듬과 응용 프로그램)을 소개한다. ◈ 옮긴이의 말 ◈ 처음 접하는 이들에게는 그래프 데이터가 어렵게 느껴질 수 있다. 하지만 그래프 데이터는 우리의 일상과 친숙해질 수 있는 데이터 형식이다. 사회는 복잡한 관계의 연속으로 구성되는데, 노드와 간선으로 표현되는 그래프 데이터는 이러한 관계의 표현을 가장 잘 나타낼 수 있는 데이터 형식이다. 관계 표현을 가장 쉽게 할 수 있다는 강점이 있어 최근에는 그래프 형식으로 데이터를 저장하는 데이터베이스 등이 각광받고 있다. 이 책은 그래프 데이터를 다루기 위한 아주 기본적인 것들로 시작해서, 실생활에 적용할 수 있는 예시를 통해 보다 쉬운 이해를 제공한다. 예시를 통해서 그래프 데이터를 다루는 기본기를 쌓고, 머신 러닝 알고리즘들을 활용해 고급 응용 스킬들을 배워볼 수 있다. 단순히 이론적인 설명에서 끝나는 것이 아니라 실제 서비스에 필요한 기본 지식들을 소개한다는 점에서 훌륭한 책이다. 물론 나와있는 내용만으로 그래프 머신 러닝 전문가가 될 수 있다고는 할 수 없을 것이다. 그러나 훌륭한 시작을 함께하기 위해 좋은 책이라고 생각한다. 이 책에서는 보다 복잡한 설명이나 심도 있는 이해가 필요한 부분에 참고할 만한 자료들에 대한 소개가 나와있다. 이러한 참고 자료들을 찾아보고 스스로 새로운 문제를 해결하기 위해 노력해보기를 꼭 권장한다. 이러한 노력이 인공지능 연구의 선도자가 되는 길이라고 생각한다.
  • 1부. 그래프 머신러닝 소개 2부. 1장. 그래프 시작하기 __기술적 필요 사항 __networkx로 그래프 이해하기 ____그래프의 종류 ____그래프 표현 __그래프 플로팅 ____networkx ____Gephi __그래프 속성 ____통합 측정 지표 ____분리 측정 지표 ____중심성 측정 지표 ____탄력성 측정 지표 __벤치마크 및 저장소 ____간단한 그래프의 예 ____그래프 생성 모델 ____벤치마크 __큰 그래프 다루기 __요약 2장. 그래프 머신러닝 __기술적 필요 사항 __그래프 머신러닝 이해하기 ____머신러닝의 기본 원리 ____그래프 머신러닝의 이점 __일반화된 그래프 임베딩 문제 __그래프 임베딩 머신러닝 알고리듬의 분류 ____임베딩 알고리듬의 분류 __요약 2부. 그래프에서의 머신러닝 3장. 비지도 그래프 학습 __기술적 필요 사항 __비지도 그래프 임베딩 로드맵 __얕은 임베딩 방법 ____행렬 분해 ____그래프 분해 ____고차 근접 보존 임베딩 ____전역 구조 정보를 통한 그래프 표현 ____skip-gram ____DeepWalk ____Node2Vec ____Edge2Vec ____Graph2Vec __오토인코더 ____텐서플로와 케라스-강력한 조합 ____첫 번째 오토인코더 ____노이즈 제거 오토인코더 ____그래프 오토인코더 ...
  • 클라우디오 스타밀레 [저]
  • 2013년 9월 이탈리아 칼라브리아 대학(University of Calabria)에서 컴퓨터 공학 석사 학위를 받았으며, 2017년 9월 벨기에 뢰번 가톨릭 대학(KU Leuven) 및 프랑스 끌로드 베흐노리용 1 대학(Universite Claude Bernard Lyon 1)에서 공동 박사 학위를 받았다. 석박사 학위 과정 동안 생물 의학 분야를 전공하면서 인공지능, 그래프 이론, 머신러닝에 관해 탄탄한 배경 지식을 쌓았다. 현재 최상위 고객이 데이터 기반 전략을 구현하고 인공지능 기반 솔루션을 구축해 효율성을 높이고 새로운 비즈니스 모델을 수행하도록 지원하는 컨설팅 회사인 CGnal의 선임 데이터 과학자다.
  • 장기식 [저]
  • 경찰청 사이버안전국 디지털포렌식센터에서 디지털 포렌식 업무를 담당했다. 이후 경찰대학 치안정책연구소에서 데이터 분석과 머신러닝 기술을 접한 이후, 데이터 분석을 기반으로 한 머신러닝 기술을 연구했으며, 이 경험을 바탕으로 현재 아이브스 AI LAB에서 데이터 분석과 딥러닝 기반 영상 보안 솔루션 개발 및 연구를 책임지고 있다. 번역서로는 『보안을 위한 효율적인 방법 PKI』(인포북, 2003)와 『EnCase 컴퓨터 포렌식』(에이콘, 2015), 『인텔리전스 기반 사고 대응』(에이콘, 2019), 『적대적 머신러닝』(에이콘, 2020)이 있다.
  • 전체 0개의 구매후기가 있습니다.

인터파크도서는 고객님의 단순 변심에 의한 교환과 반품에 드는 비용은 고객님이 지불케 됩니다.
단, 상품이나 서비스 자체의 하자로 인한 교환 및 반품은 무료로 반품 됩니다.
교환 및 반품이 가능한 경우
상품을 공급 받은 날로부터 7일이내 가능
공급받으신 상품의 내용이 표시, 광고 내용과 다르거나 다르게 이행된 경우에는 공급받은 날로부터 3개월 이내,
   혹은 그사실을 알게 된 날 또는 알 수 있었던 날로부터 30일 이내
상품에 아무런 하자가 없는 경우 소비자의 고객변심에 의한 교환은 상품의 포장상태 등이 전혀 손상되지 않은 경우에 한하여 가능
교환 및 반품이 불가능한 경우
구매확정 이후(오픈마켓상품에 한함)
고객님의 책임 있는 사유로 상품 등이 멸실 또는 훼손된 경우
   (단, 상품의 내용을 확인하기 위하여 포장 등을 훼손한 경우는 제외)
시간이 지남에 따라 재판매가 곤란할 정도로 물품의 가치가 떨어진 경우
포장 개봉되어 상품 가치가 훼손된 경우
다배송지의 경우 반품 환불
다배송지의 경우 다른 지역의 반품을 동시에 진행할 수 없습니다.
1개 지역의 반품이 완료된 후 다른 지역 반품을 진행할 수 있으므로, 이점 양해해 주시기 바랍니다.
중고상품의 교환
중고상품은 제한된 재고 내에서 판매가 이루어지므로, 교환은 불가능합니다.
오픈마켓 상품의 환불
오픈마켓상품에 대한 책임은 원칙적으로 업체에게 있으므로, 교환/반품 접수시 반드시 판매자와 협의 후 반품 접수를 하셔야하며,
   반품접수 없이 반송하거나, 우편으로 보낼 경우 상품 확인이 어려워 환불이 불가능할 수 있으니 유의하시기 바랍니다.
배송예정일 안내
인터파크 도서는 모든 상품에 대해 배송완료예정일을 웹사이트에 표시하고 있습니다.
<인터파크 직배송 상품>
상품은 월~토요일 오전 10시 이전 주문분에 대하여 당일 출고/당일 배송완료를 보장하는 상품입니다.
상품은 서울지역/평일 주문분은 당일 출고/익일 배송완료를 보장하며,
서울외지역/평일 주문분의 경우는 오후 6시까지 주문분에 대하여 익일 배송완료를 보장하는 상품입니다.
(단, 월요일은 12시까지 주문에 한함)
상품은, 입고예정일(제품출시일)+택배사배송일(1일)에 배송완료를 보장합니다.
~ 상품은 유통특성상 인터파크에서 재고를 보유하지 않은 상품으로
주문일+기준출고일+택배사배송일(1일)에 배송완료를 보장합니다.(토/공휴일은 배송기간에 포함되지 않습니다.)
※기준출고일:인터파크가 상품을 수급하여 물류창고에서 포장/출고하기까지 소요되는 시간
<업체 직접배송/오픈마켓 상품>
~ 상품은 업체가 주문을 확인하고, 출고하기까지 걸리는 시간입니다.
주문일+기준출고일+택배사배송일(2일)에 배송완료를 보장합니다.(토/공휴일은 배송기간에 포함되지 않습니다.)
※5일이내 출고가 시작되지 않을시, 오픈마켓 상품은 자동으로 주문이 취소되며, 고객님께 품절보상금을 지급해 드립니다.
배송비 안내
도서(중고도서 포함)만 구매하시면 : 배송비 2,000원 (1만원이상 구매 시 무료배송)
음반/DVD만 구매하시면 : 배송비 1,500원 (2만원이상 구매 시 무료배송)
잡지/만화/기프트만 구매하시면 : 배송비 2,000원 (2만원이상 구매 시 무료배송)
도서와 음반/DVD를 함께 구매하시면 : 배송비 1,500원 1만원이상 구매 시 무료배송)
도서와 잡지/만화/기프트/중고직배송상품을 함께 구매하시면 : 2,000원 (1만원이상 구매 시 무료배송)
업체직접배송상품을 구매시 : 업체별로 상이한 배송비 적용

   * 세트상품의 경우 부분취소 시 추가 배송비가 부과될 수 있습니다.
   * 북카트에서 배송비없애기 버튼을 클릭하셔서, 동일업체상품을 조금 더 구매하시면, 배송비를 절약하실 수 있습니다.
해외배송 안내
인터파크도서에서는 국내에서 주문하시거나 해외에서 주문하여 해외로 배송을 원하실 경우 DHL과 특약으로 책정된 요금표에
   의해 개인이 이용하는 경우보다 배송요금을 크게 낮추며 DHL(www.dhl.co.kr)로 해외배송 서비스를 제공합니다.
해외배송은 도서/CD/DVD 상품에 한해 서비스하고 있으며, 다른 상품을 북카트에 함께 담으실 경우 해외배송이 불가합니다.
해외주문배송 서비스는 인터파크 도서 회원 가입을 하셔야만 신청 가능합니다.
알아두세요!!!
도매상 및 제작사 사정에 따라 품절/절판 등의 사유로 취소될 수 있습니다.
오픈마켓업체의 배송지연시 주문이 자동으로 취소될 수 있습니다.
출고가능 시간이 서로 다른 상품을 함께 주문할 경우 출고가능 시간이 가장 긴 기준으로 배송됩니다.
유통의 특성상 출고기간은 예정보다 앞당겨지거나 늦춰질 수 있습니다.
택배사 배송일인 서울 및 수도권은 1~2일, 지방은 2~3일, 도서, 산간, 군부대는 3일 이상의 시간이 소요됩니다.
  • 0개
  • 0개